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Abstract

Remember that, in general, the word scalar is not restricted to real numbers. We are only using real numbers 
as scalars in this book, but eigenvalues are often complex numbers. Consider the square matrix A. We say 
that A is an eigen-value of A if there exists a non-zero vector x such that Ax = \x. In this case, x is called 
an eigen-vector (corresponding to A ) ,  and the pair ( A ,x) is called an eigen-pair for A. Therefore, A and 
x are an eigenvalue and an eigenvector, respectively, for A. Now that we have seen an eigen-value and 
an eigen-vector, let’s talk a little more about them. Why did we require that an eigenvector not be zero? 
If the eigen-vector was zero, the equation Ax = Xx would yield 0 = 0. Since, this equation is always true, 
it is not an interesting case. Therefore, we define an eigen-vector to be a non-zero vector that satisfies 
Ax = Xx. However, as we showed in the previous example, an eigen-value can be zero without causing 
a problem. We usually say that x is an eigen-vector corresponding to the eigen-value A if they satisfy 
Ax = Xx. Since, each eigen-vector is associated with an eigen-value, we often refer to an x and A that 
correspond to one another as an eigen-pair. Did we notice that we called x “an” eigen-vector rather than 
“the” eigen-vector corresponding to A.
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This is because any non-zero, scalar multiple of 
an eigenvector is also an eigenvector. If we let 
c represent a scalar, then we can prove this fact 
through the following steps. We have already 
computed eigenvectors in this course. When 
we studied Markov chains, we computed an 
eigenvector corresponding to Ar when we found 
the matrix to which the probabilities seemed to 
converge after many steps. Any row of that matrix 
is an eigenvector for AT because all the rows of 
that matrix are the same. We write that row as a 
column vector when we use it as an eigenvector. The 
eigenvector that we found is called the dominant 
eigenvector.
The dominant eigenvector of a matrix is an 
eigenvector corresponding to the eigenvalue 

of largest magnitude (for real numbers, largest 
absolute value) of that matrix. Although we only 
found one eigenvector, we found a very important 
eigenvector. Many of the “real world” applications 
are primarily interested in the dominant eigenpair. 
The method that we used to find this eigenvector is 
called the power method. The power method will 
be explained later in this chapter. An eigenvector 
corresponding to the transpose of a transition 
matrix is the transpose of any row of the matrix 
that Ak converges to as k grows, these rows are all 
the same. The dominant eigenvalue is always 1 for 
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a transition matrix. The equation holds, so we have 
found an eigenpair corresponding to the transpose 
of the transition matrix.
For a transition matrix, the dominant eigenvalue is 
always 1. An eigenvector corresponding to A — 1 
for A is the transpose of any row of A where A’ is 
the matrix to which A converges as k grows. The 
matrix for which we are finding an eigenpair must 
have been set up so that the columns (not the rows) 
add to 1 for the eigenvector to be read from A ; this 
is why we are dealing with A instead of A. These 
rules will require some modification if we are not 
dealing with a transition matrix.
If we do not have a transition matrix, can we still 
use the power method? Yes we can, but we need 
to modify the steps a bit because the dominant 
eigenvalue will not necessarily be the number one. 
Let us explain how to use the power method. An 
example follows the remarks to help clarify these 
steps.

�� Let us choose a vector and call it x0. Set i = 0.
�� Multiply to get the next approximation for x 

using the formula xM =AX,
�� Divide every term in xM by the last element of 

the vector and call the new vector
�� Repeat steps 2 and 3 until and agree to the 

desired number of digits.
The vector obtained in step 4 is an approximate 
eigenvector corresponding to the dominant 
eigenvalue. We will call it x.
Because any constant multiple of an eigenvector 
is an eigenvector, we did not have to divide by 
the last element in the vector in step 3. We could 
have divided by any element or not divided at all. 
We divided so that our vector would not grow too 
large and we could tell when we had converged. We 
divided by the last element of the vector so that we 
would have a well-defined algorithm for using the 
power method. The choice of the last element over 
any of the others was arbitrary.
Therefore, if the last element is zero, divide by 
another element of the vector for that entire 
problem. When people program the power method 
on a computer, they usually divide by which is 
defined as the length of the vector, so that they don’t 
have to worry about whether or not an element is 
zero.

2 2 2
1 22 nχ χ χ χ= + +…+

Some calculators will not let we divide a vector by 
a constant. On those calculators, we can multiply 
by the multiplicative inverse (reciprocal) of the 
constant.
We will probably not be able to directly input 
the Rayleigh quotient into were calculator. It will 
consider the numerator and denominator as 1 by 
1 matrices. We consider 1 by 1 matrices to be the 
same as real numbers, but were calculator may not 
consider them the same. Since we cannot divide 
matrices, were calculator will probably give we an 
error message.
Therefore, x2 = 1 and xl + 1 (1) = 0, so xx = – 1. This 

tells us that 
1

1

− 
 
 

is an eigenvector corresponding 

to = –4 when A = 
2 6

 
2 2

 
 −  . Using the characteristic 

equation and Gaussian elimination, we are able 
to find both of the eigenvalues to the matrix and 
corresponding eigenvectors.
We can find eigenpairs for larger systems using 
this method, but the characteristic equation gets 
impossible to solve directly when the system gets 
too large. We could use approximations that get 
close to solving the characteristic equation, but there 
are better ways to find eigenpairs that we will study 
in the future. However, these two methods give we 
an idea of how to find eigenpairs.
Another matrix for which the power method 

will not work is the matrix A = 5 0
 

0 5

 
 − 

because 

the eigenvalues are both the real number 5. The 
method that we showed we earlier will yield the 

eigenvector 
1

0

 
 
  to correspond to the eigenvalue A 

= 5. Other methods will reveal, and we can check, 

that 
1

0

 
 
  is also an eigenvector of A corresponding 

to A = 5. Notice that these two eigenvectors are not 
multiples of one another. If the same eigenvalue is 
repeated p times for a particular matrix, then there 
can be as many as p different eigenvectors that are 
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not multiples of each other that correspond to that 
eigenvalue.
We said that eigenvalues are often complex 
numbers. However, if the matrix A is symmetric, 
then the eigenvalues will always be real numbers. 
As we can see from the problems that we worked, 
eigenvalues can also be real when the matrix is 
not symmetric, but keep in mind that they are not 
guaranteed to be real.
Now that we know how to find eigenpairs, we 
might want to know what uses they have. The 
interesting uses come from larger systems, so we 
will just discuss them rather than solve them. 
Have we ever seen the video of the collapse of 
the Tacoma Narrows Bridge? The Tacoma Bridge 
was built in 1940. From the beginning, the bridge 
would form small waves like the surface of a body 
of water. This accidental behavior of the bridge 
brought many people who wanted to drive over this 
moving bridge. Most people thought that the bridge 
was safe despite the movement. However, about 
four months later, the oscillations (waves) became 
bigger. At one point, one edge of the road was 28 
feet higher than the other edge. Finally, this bridge 
crashed into the water below. One explanation for 
the crash is that the oscillations of the bridge were 
caused by the frequency of the wind being too close 
to the natural frequency of the bridge. The natural 
frequency of the bridge is the eigenvalue of smallest 
magnitude of a system that models the bridge. This 
is why eigenvalues are very important to engineers 
when they analyze structures (Differential Equations 
and Their Applications, 1983, pp. 171-173).

DISCUSSION
The eigenvalue of smallest magnitude of a matrix is 
the same as the inverse (reciprocal) of the dominant 
eigenvalue of the inverse of the matrix. Since most 
applications of eigenvalues need the eigenvalue 
of smallest magnitude, the inverse matrix is often 
solved for its dominant eigenvalue. This is why the 
dominant eigenvalue is so important. Also, a bridge 
in Manchester, England collapsed in 1831 because of 
conflicts between frequencies. However, this time, 
the natural frequency of the bridge was matched 
by the frequency caused by soldiers marching in 
step. Large oscillations occurred and the bridge 
collapsed. This is why soldiers break cadence when 
crossing a bridge.

Frequencies are also used in electrical systems. 
When we tune the radio, we are changing the 
resonant frequency until it matches the frequency 
at which the station is broadcasting. Engineers 
used eigenvalues when they designed the radio. 
Frequencies are also vital in music performance. 
When instruments are tuned, their frequencies are 
matched. It is the frequency that determines what 
we hear as music. Although musicians do not study 
eigenvalues in order to play their instruments better, 
the study of eigenvalues can explain why certain 
sounds are pleasant to the ear while others sound 
“flat” or “sharp.” When two people sing in harmony, 
the frequency of one voice is a constant multiple of 
the other. That is what makes the sounds pleasant. 
Eigen values can be used to explain many aspects 
of music from the initial design of the instrument to 
tuning and harmony during a performance.
Even the concert halls are analyzed so that every 
seat in the theater receives a high quality sound. Car 
designers analyze eigenvalues in order to damp out 
the noise so that the occupants have a quiet mode. 
Eigen value analysis is also used in the design of 
car stereo systems so that the sounds are directed 
correctly for the listening pleasure of the passengers 
and driver. When we see a car that vibrates because 
of the loud booming music, think of eigenvalues. 
Eigenvalue analysis can indicate what needs to be 
changed to reduce the vibration of the car due to 
the music.
Eigen values are not only used to explain natural 
occurrences, but also to discover new and better 
designs for the future. Some of the results are 
quite surprising. If we were asked to build the 
strongest column that we could to support the 
weight of a roof using only a specified amount 
of material, what shape would that column take? 
Most of us would build a cylinder like most other 
columns that we have seen. However, Steve Cox 
of Rice University and Michael Overton of New 
York University proved, based on the work of J. 
Keller and I. Tadjbakhsh, that the column would 
be stronger if it was largest at the top, middle, and 
bottom. At the points 1of the way from either end, 
the column could be smaller because the column 
would not naturally buckle there anyway.
This new design was discovered through the study 
of the eigenvalues of the system involving the 
column and the weight from above. Note that this 
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column would not be the strongest design if any 
significant pressure came from the side, but when 
a column supports a roof, the vast majority of the 
pressure comes directly from above.
Eigen values can also be used to test for cracks or 
deformities in a solid. Can we imagine if every 
inch of every beam used in construction had to 
be tested? The problem is not as time consuming 
when eigenvalues are used. When a beam is 
struck, its natural frequencies (eigenvalues) can be 
heard. If the beam “rings,” then it is not flawed. 
A dull sound will result from a flawed beam 
because the flaw causes the eigenvalues to change. 
Sensitive machines can be used to “see” and “hear” 
eigenvalues more precisely.
Oil companies frequently use eigenvalue analysis to 
explore land for oil. Oil, dirt, and other substances 
all give rise to linear systems which have different 
eigenvalues, so eigenvalue analysis can give a good 
indication of where oil reserves are located. Oil 
companies place probes around a site to pick up the 
waves that result from a huge truck used to vibrate 
the ground. The waves are changed as they pass 
through the different substances in the ground. The 
analysis of these waves directs the oil companies to 
possible drilling sites.
There are many more uses for eigenvalues, but we 
only wanted to give we a sampling of their uses. 
When we study science or engineering in college, 
we will become quite familiar with eigenvalues and 
their uses. There are also numerical difficulties that 
can arise when data from real-world problems are 
used.

Chio Method for evaluating Determinants

Let us consider the determinant.

 
Let us suppose that some element, say c4 is unity. 
If there is no element in the determinant, we can 

always divide a given row (or column) by one 
of its elements and take the element out in front 
of the determinant. We shall, however, for the 
moment assume that, as the determinant stands, 
c4 = l. Having chosen the pivotal element to be c4, 
we make all the other elements in that row 0 by 
multiplying all members of the fourth column by Cj 
and subtracting the resulting members from those 
of the first column, by multiplying next by c2 and 
subtracting the results from the second column, 
by multiplying this same fourth column of D by c3 
and subtracting from third column, and finally, by 
multiplying the fourth column by c5 and subtracting 
from the fifth column. The result, since c4 = l, is 

 6j c, g4 62c2 e4 63 c3 e4g4gscgg4 or by expanding by minors 
in terms of the elements of the third row,

 

The fourth order terms are seen to be obtainable 
from the original determinant by following steps:
	 1.	 Choosing a pivotal element, such as c4, which 

must either be equal to unity in advance or 
be made unity by division of the row (or 
column) by that element.

	 2.	 Crossing out the row and column belonging 
to this element.

	 3.	 Subtracting from each of the remaining 
elements the product of the elements found 
at the base of perpendiculars drawn from the 
element to the crossed out row and column.

	 4.	 Multiplying the determinant by (-l)r+s, where 
r is the row and s is the column of the pivotal 
element.

This constitute Chio’s rule, which can be applied 
repeatedly to reduce a given determinant eventually 
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to a first order determinant, i.e., to a number. Each 
application of the rule reduces the order by one.
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